Here I list some books on number theory, algebraic geometry, arithmetic geometry etc. I will try to include only the books that I have read (entirely, or partially) myself.
Number Theory:
- J. W. S. Cassels, A. Fröhlich, Algebraic Number Theory.
- G. J. Janusz, Algebraic Number Fields.
- S. Lang, Algebraic Number Theory.
- D. A. Marcus, Number Fields.
- J. Neukirch, Algebraic Number Theory.
- P. Samuel, Algebraic Theory of Numbers.
- J. Neukirch, A. Schmidt, Class Field Theory – Bonn Lectures.
- K. Kato, N. Kurokawa, T. Saito. Number Theory 1: Fermat’s Dream.
- K. Kato, N. Kurokawa, T. Saito. Number Theory 2: Introduction to Class Field Theory.
- N. Kurokawa, M. Kurihara, T. Saito. Number Theory 3: Iwasawa Theory and Modular Forms.
Algebraic Geometry:
- R. Hartshorne, Algebraic Geometry.
- Q. Liu, Algebraic Geometry and Arithmetic Curves.
- U. Görtz and T. Wedhorn, Algebraic Geometry I, Schemes.
- K. Ueno, Algebraic Geometry 1: From Algebraic Varieties to Schemes.
- K. Ueno, Algebraic Geometry 2: Sheaves and Cohomology.
- K. Ueno, Algebraic Geometry 3: Further Study of Schemes.
- W. Waterhouse, Introduction to Affine Group Schemes.
Elliptic Curves, Abelian Varieties & Co.:
- J. Silverman, The Arithmetic of Elliptic Curves.
- J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves.
- J. Silverman, J. Tate, Rational Points of Elliptic Curves.
- B. Edixhoven, G. van der Geer, B. Moonen, Abelian Varieties.
- D. Mumford, Abelian Varieties.
- J. Milne, Abelian Varieties.
- F. Diamond, J. Shurman, A First Course in Modular Forms.
- J. Milne, Introduction to Shimura Varieties.
Specialized and Advanced Topics:
- L. C. Washington, Introduction to Cyclotomic Fields.
- S. Lang, Cyclotomic Fields I and II.
- G. Tamme, Introduction to Étale Cohomology.
- E. Freitag, R. Kiehl, Étale Cohomology And The Weil Conjecture.
- J. Milne, Étale Cohomology.
- S. Kudla, E. Kowalski, E. De Shalit, D. Gaitsgory, J. Cogdell, D. Bump, An Introduction to The Langlands Program.
- C. J. Bushnell, G. Henniart, The Local Langlands Conjecture For GL(2).
- G. Cornell, J. H. Silverman, Arithmetic Geometry.
- B. Conrad, K. Rubin, Arithmetic Algebraic Geometry.
- G. Cornell, J. H. Silverman, G. Stevens, Modular Forms and Fermat’s Last Theorem.
- T. Saito. Fermat’s Last Theorem: Basic Tools.
- T. Saito. Fermat’s Last Theorem: The Proof.
- C.-L. Chai, G. Faltings, Degeneration of Abelian Varieties.
- S. Bosch, W. Lütkebohmert, M. Raynaud, Néron Models.
- J. Fresnel, M. van der Put, Rigid Analytic Geometry and its Applications.
- S. Bosch, Lectures on Formal and Rigid Geometry.
- A. Borel, W. Casselman, Automorphic Forms, Representations, and L-Functions I & II.
- M. Harris, R. Taylor, The Geometry and Cohomology of Some Simple Shimura Varieties.