AGNT Essentials - problems set 2

Instructor: Mohammad Hadi Hedayatzadeh Teaching Assistants: Amirhosein Ghorbaninejad & Amirmohammad Ghavi

Problem 1 (For those who have seen the concept of localization before) Verify that $A \to S^{-1}A$ satisfies the following universal property: $S^{-1}A$ is initial among A-algebras, B, where every element of S is sent to an invertible element in B.

Problem 2 If X is a topological space, show that fiber products always exist in the category of open sets of X, by describing what a fibered product is.

Problem 3 If Z is the final object in category C, and $X, Y \in C$. Then, assuming all relevant (fiber)products exist, show that $X \times_Z Y = X \times Y$

Problem 4 If the two squares in the following commutative diagram are Cartesian, show that the "outside rectangle" (involving U, V, Y and Z) is also Cartesian.

$$\begin{array}{ccc} U & \longrightarrow V \\ \downarrow & & \downarrow \\ W & \longrightarrow X \\ \downarrow & & \downarrow \\ Y & \longrightarrow Z \end{array}$$

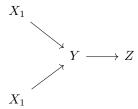
Problem 5 Given morphisms $X_1 \to Y, X_2 \to Y$, and $Y \to Z$,

- (a) Show that there is a natural morphism $X_1 \times_Y X_2 \to X_1 \times_Z X_2$, assuming that both fibered products exist.
- (b) Show that if $Y \to Z$ is a monomorphism, then the morphism you described in the last part is an isomorphism.

Problem 6 (a) (The Diagonal-Base-Change Diagram.) Suppose we are given morphisms $X_1, X_2 \to Y$ and $Y \to Z$. Show that the following is a Cartesian square.

$$\begin{array}{cccc} X_1 \times_Y X_2 & \longrightarrow & X_1 \times_Z X_2 \\ \downarrow & & \downarrow & & \downarrow \\ Y & \longrightarrow & Y \times_Z Y \end{array}$$

(b) Solve the last part again by identifying both $X_1 \times_Y X_2$ and $Y \times_{Y \times_Z Y} (X_1 \times_Z X_2)$ as the limit of the diagram.



Problem 7 Show that in the category Sets,

$$\left\{(a_i)_{i\in\mathcal{I}}\in\prod_i A_i: F(m)(a_j)=a_k \text{ for all } m\in Mor_{\mathcal{I}}(j,k)\in Mor(\mathcal{I})\right\},$$
 along with the obvious projection maps to each A_i , is the limit $\lim_{\mathcal{I}} A_i$.

In the next problem, you will prove the following proposition:

Proposition 1 Let A be a category.

- (a) If A has all products and equalizers then A has all limits.
- (b) If A has binary products, a terminal object and equalizers then A has finite limits.

Problem 8

(a) Let \mathcal{A} be a category with all products and equalizers. Let $D: \mathbf{I} \to \mathcal{A}$ be a diagram \mathcal{A} . Define maps

$$\prod_{I \in I} D(I) \xrightarrow{s} \prod_{J \xrightarrow{u} K \text{ in } I} D(K)$$

as follows: given $J \xrightarrow{u} K$ in **I**, the u-component of s is the composite

$$\prod_{I \in I} D(I) \xrightarrow{pr_J} D(J) \xrightarrow{Du} D(K)$$

(where pr denotes a product projection), and the u-component of t is pr_K . Let $L \xrightarrow{p} \prod_{I \in I} D(I)$ be the equalizer of s and t, and write p_I for the I-component of p. Show that $(L \xrightarrow{p_I} D(I))_{I \in I}$ is a limit cone on D, thus proving the part (a) of the proposition.

(b) Adapt the argument to prove the part (b) of the proposition.

Problem 9 Prove that a category with pullbacks and a terminal object has all finite limits.

Problem 10

- (a) Prove that in the category of monoids, the inclusion $(\mathbb{N}, +, 0) \hookrightarrow (\mathbb{Z}, +, 0)$ is epic, even though it is not surjective.
- (b) Prove that in the category of rings, the inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is epic, even though it is not surjective.