AGNT Essentials - problems set 3

Instructor: Mohammad Hadi Hedayatzadeh Teaching Assistants: Amirhosein Ghorbaninejad & Amirmohammad Ghavi

Problem 1 Show that left adjoints preserve initial objects: that is, if

$$\mathcal{A} \stackrel{F}{\rightleftharpoons}_{G} \mathcal{B}$$

and I is an initial object of \mathcal{A} , then F(I) is an initial object of \mathcal{B} . Dually, show that right adjoints preserve terminal objects.

Problem 2 Let G be a group.

- (a) What interesting functors are there (in either direction) between Set and the category [G, Set] of left G-sets? Which of those functors are adjoint to which?
- (b) Similarly, what interesting functors are there between \mathbf{Vect}_k and the category $[G, \mathbf{Vect}_k]$ of k-linear representations of G, and what adjunctions are there between those functors?

Problem 3 Fix a topological space X, and write $\mathcal{O}(X)$ for the poset of open subsets of X, ordered by inclusion. Let

$$\Delta: \mathbf{Set} \to [\mathcal{O}(X)^{op}, \mathbf{Set}]$$

be the functor assigning to a set A the presheaf ΔA with constant value A (for the definition of presheaves see Definition 1.2.15). Exhibit a chain of adjoint functors

$$\Lambda \dashv \Pi \dashv \Delta \dashv \Gamma \dashv \nabla.$$

Problem 4 Let $(F, G, \eta, \varepsilon)$ be an equivalence of categories, as in Definition 1.3.15. Prove that F is left adjoint to G (heeding the warning in Remark 2.2.8).

Problem 5 Let $\mathcal{A} \stackrel{F}{\underset{U}{\longrightarrow}}$ Set be an adjunction. Suppose that for at least one $A \in \mathcal{A}$, the set U(A) has at least two elements. Prove that for each set S, the unit map $\eta_S : S \to UF(S)$ is injective. What does this mean in the case of the usual adjunction between **Grp** and **Set**?

- **Problem 6** (a) Let $\mathcal{A} \rightleftharpoons_{G}^{F} \mathcal{B}$ be an adjunction with unit η and counit ε . Write Fix(GF) for the full subcategory of \mathcal{A} whose objects are those $A \in \mathcal{A}$ such that η_{A} is an isomorphism, and dually $Fix(FG) \subseteq \mathcal{B}$. Prove that the adjunction $(F, G, \eta, \varepsilon)$ restricts to an equivalence $(F', G', \eta', \varepsilon')$ between Fix(GF) and Fix(FG).
 - (b) Part (a) shows that every adjunction restricts to an equivalence between full subcategories in a canonical way. Take some examples of adjunctions and work out what this equivalence is.
- **Problem 7** (a) Show that for any adjunction, the right adjoint is full and faithful if and only if the counit is an isomorphism.
 - (b) An adjunction satisfying the equivalent conditions of part 1 is called a reflection. (Compare Example 2.1.3(d).) Of the examples of adjunctions given in this chapter, which are reflections?
- **Problem 8** (a) Let $f: K \to L$ be a map of sets, and denote by $f^*: \mathcal{P}(L) \to \mathcal{P}(K)$ the map sending a subset S of L to its inverse image $f^{-1}S \subseteq K$. Then f^* is order-preserving with respect to the inclusion orderings on $\mathcal{P}(K)$ and $\mathcal{P}(L)$, and so can be seen as a functor. Find left and right adjoints to f^* .
 - (b) Now let X and Y be sets, and write p : X × Y → X for first projection. Regard a subset S of X as a predicate S(x) in one variable x ∈ X, and similarly a subset R of X × Y as a predicate R(x, y) in two variables. What, in terms of predicates, are the left and right adjoints to p*? For each of the adjunctions, interpret the unit and counit as logical implications. (Hint: the left adjoint to p* is often written as ∃_Y, and the right adjoint as ∀_Y.)

Problem 9 Given a functor $F : \mathcal{A} \to \mathcal{B}$ and a category \mathcal{S} , there is a functor $F^* : [\mathcal{B}, \mathcal{S}] \to [\mathcal{A}, \mathcal{S}]$ defined on objects $Y \in [\mathcal{B}, \mathcal{S}]$ by $F^*(Y) = Y \circ F$ and on maps α by $F^*(\alpha) = \alpha F$. Show that any adjunction $\mathcal{A} \rightleftharpoons_G^F \mathcal{B}$ and category \mathcal{S} give rise to an adjunction

$$[\mathcal{A}, \mathcal{S}] \stackrel{G^*}{\underset{F^*}{\rightleftharpoons}} [\mathcal{B}, \mathcal{S}].$$

(Hint: use Theorem 2.2.5.)

Problem 10 Let p be a prime number. Show that the functor $U_p: \operatorname{\mathbf{Grp}} \to \operatorname{\mathbf{Set}}$ defined in Example 4.1.5 is isomorphic to $\operatorname{\mathbf{Grp}}(Z/pZ, -)$. (To check that there is an isomorphism of functors – that is, a natural isomorphism – you will first need to define U_p on maps. There is only one sensible way to do this.)

Problem 11 Using the result of Exercise 0.13(a), prove that the forgetful functor

$\mathbf{CRing} \to \mathbf{Set}$

is isomorphic to $\mathbf{CRing}(Z[x], -)$, as in Example 4.1.14.

Problem 12 The Sierpinski space is the two-point topological space S in which one of the singleton subsets is open but the other is not. Prove that for any topological space X, there is a canonical bijection between the open subsets of X and the continuous maps $X \to S$. Use this to show that the functor \mathcal{O} : Top \to Set of Example 4.1.19 is represented by S.

Problem 13 Let $M: \mathbf{Cat} \to \mathbf{Set}$ be the functor that sends a small category C to the set of all maps in C. Prove that M is representable.

Problem 14 Let \mathcal{A} be a locally small category. Prove each of the following statements directly (without using the Yoneda lemma).

- (a) $H_{\bullet}: \mathcal{A} \to [\mathcal{A}^{op}, \mathbf{Set}]$ is faithful.
- (b) H_{\bullet} is full.
- (c) Given $A \in \mathcal{A}$ and a presheaf X on \mathcal{A} , if X(A) has an element u that is universal in the sense of Corollary 4.3.2, then $X \cong H_A$.

Problem 15 Let \mathcal{B} be a category and $J : G' \to \mathcal{D}$ a functor. There is an induced functor

$$J \circ - : [\mathcal{B}, G] \to [\mathcal{B}, \mathcal{D}]$$

defined by composition with J.

- (a) Show that if J is full and faithful then so is $J \circ -$.
- (b) Deduce that if J is full and faithful and $G, G' : \mathcal{B} \to G'$ with $J \circ G \cong J \circ G'$ then $G \cong G'$.
- (c) Now deduce that right adjoints are unique: if $F : \mathcal{A} \to \mathcal{B}$ and $G, G' : \mathcal{B} \to \mathcal{A}$ with F + G and F + G' then $G \cong G'$. (Hint: the Yoneda embedding is full and faithful.)